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We show that the high harmonics generation �HHG� in quantum dot structures can be changed from only
odd orders to both odd and even orders by controlling the coupling parameters. We find that even harmonics
cannot be generated in a multilevel system if the electronic levels can be classified into groups by the parity of
oscillation modes �the Fourier components of Floquet states� and the radiative transitions within same group
are forbidden. Otherwise both odd and even harmonics are possible. According to the two distinct dynamic
behaviors of HHG, we obtain a straightforward judgement of HHG in any multilevel systems.
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The fundamental nature of high harmonics generation
�HHG� is a process of frequency conversion induced by non-
linear interaction processes, which provides an important
method to obtain coherent high-frequency radiation from
low-frequency source. In the past decade, the HHG in atomic
or molecular systems has been extensively studied due to its
potential applications in x-ray coherent radiation and attosec-
ond pulse lasers.1–4 Most recently, the HHG study is ex-
tended to semiconductor quantum dots �QDs� and coupled
QDs �CQDs�, the so-called “artificial atoms and
molecules.”5–7 One motivation of the study of the HHG in
QDs is to find an efficient way of terahertz wave generation
due to their controllable energy spectra and wave functions.

Generally, the HHG spectrum of an atomic or molecular
system consists of only odd order harmonics. It is a quantum
effect resulting from the geometric inversion symmetry of
the potential, which conserves the parity of the eigenstates.
Great efforts have been made for even-harmonic generation
by breaking the inversion symmetry of atomic or molecular
systems.8–11 In real QD systems, especially in CQDs, the
inversion symmetry is usually absent. However, it must be
realized that the absence of geometric symmetry cannot en-
sure the even-harmonic generation. For example, there are
only odd harmonics in the two-level QDs with or without the
inversion symmetry.5–7 In this work, we explore the dynamic
behaviors of an electron in lateral-coupled triple-QD struc-
tures �TQDSs� under driving fields and reveal the selection
rule of HHG in multilevel systems without the inversion
symmetry.

In experiments, the energy-level structures and corre-
sponding wave functions of TQDS can be modulated by con-
trolling dot confinement and interdot tunneling. For a realis-
tic lateral-coupled TQDS, the interdot tunneling is mainly
determined by lateral confinement of each dot and distance
between dots. Compared with the lateral confinement,
the stronger vertical confinement gives an energy constant to
the low-lying levels. Usually, in theoretical studies, a two-
dimensional coupled parabolic potential �as shown in
Fig. 1�a�� in effective mass approximation is adopted as
follows:
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where m� is the effective mass of electron. �l, �m and �r are
parabolic confining frequencies of the left, middle, and right
dots, respectively. dx is the distance between the left and
right dots and the middle dot is dy away from the others in
the y direction. Using electronic states of the three single
QDs �� j

k� �j= l ,m ,r� to construct a nonorthogonal basis, we
can obtain the single-electron eigenstates �i�= j,kcij

k �� j
k� of

the TQDS by solving a general eigenvalue problem.
We choose the effective mass of GaAs as m�=0.067me

and the parameters as ��l=6.0 meV, ��m=7.2 meV, and
��r=6.4 meV. And two typical TQDS I with dx=80 nm,
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FIG. 1. �Color online� �a� Sketch of confining potential of a
TQDS with driving field �d and coupling three-level structure. �b�–
�d� Wave functions of the three levels for TQDS I. Marks l, m, and
r indicate the dot centers, respectively. �e� The absolute value of
projection of dipoles pij to spatial direction �, black �gray� lines
corresponding to TQDS I �II�.
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dy =25 nm and II with dx=110 nm, dy =25 nm are investi-
gated. The calculated energies of the lowest three states of
TQDS I �II� are, respectively, E0=5.92�6.00� meV, E1
=6.31�6.40� meV, and E2=7.22�7.19� meV, as shown in
Fig. 1�a�. The next excited state is about 5 meV higher. A
gigahertz linear-polarized field E�t�=Fe cos �dt with angu-
lar frequency �d=303.4�109 rad /s�0.2 meV� is used to
drive the TQDS, where e is the polarization direction of the
field. With such driving field frequency and moderate ampli-
tude F, only the contribution of the lowest three states to
HHG needs to be considered since the energy differences to
higher states are much larger than �d and Rabi frequency of
the field.

Since the size of the TQDS is quite smaller than the wave-
length �about 6.2 mm� of the driving field, the dipole ap-
proximation is valid to describe the interaction of the field
and the electron. The dipole between two states pij = �i�r�j� is
determined by the distribution of the wave functions. In Figs.
1�b�–1�d�, we plot the wave functions of states �i� �i
=0,1 ,2� for TQDS I. It is clear that the electron is mainly
localized in one dot but also extended to other two dots due
to the tunneling effect. The extension of three wave functions
leads to three dipoles pij with different polarized directions.
In Fig. 1�e�, we plot the projection of pij to spatial direction
�. From the maximums of three dipoles, it can be found that
pij of TQDS I are along three direction �=0.04�, 0.21�, and
0.86�, respectively. Then the TQDS I is a �-type three-level
structure. For TQDS II, p02 and p12 are along �=0.13�, and
0.87�, and p01 is quite close to zero due to the large distance
dx. In order to reveal the rules of HHG more clear, we set p01
to zero in the following discussions and then TQDS II is a
	-type three-level structure.

In the dipole approximation, the interaction Hamiltonian
of the microwave field with the three-level TQDS is written
as

H�t� = 
i=0

2

Ei�i��i� + ��G01�0��1� + �G02�0��2� + �G12�1��2�

+ H.c.�cos �dt , �2�

where Gij = �eF /���i�e ·r�j� �i , j=0,1 ,2� are the Rabi fre-
quencies. For structure 	, G01=0 and the transition �0�
→ �1� is cutoff. The time evolution of the system can be
described by the Liouville equation12 
̇�t�=− i

� �H�t� ,
�t��
+�
�t�, where 
�t�= ���t�����t�� is the density matrix and
�
�t� describes the relaxation processes, which mainly come
from spontaneous emission of phonons leading to decay
rates ij of excited levels. In calculation, 10=21=20
=0.5 GHz are used. 
�t� is obtained by numerically solving
the Liouville equation. For a system with several dipoles
along different directions, the evolution of total dipole can be
analyzed by projecting all dipoles to any two mutually per-
pendicular directions e� and e�. Along any direction e�, the
dipole moment ��t�= ���t��e� ·r���t��=ij�ij
ij�t� with �ij
= �i�e� ·r�j�. By the Fourier transformation of ��t� along e�

and e�, the polarization of emission field can be obtained
and the power spectrum is S���= ��dt exp�−i�t����t��2
+ ��dt exp�−i�t����t��2.

In our calculation, we choose e of driving field at �
=0.14� and 0.09� for structure � and 	 �see Fig. 1�e��, and
use F=2.4 and 9.1 kV/cm, respectively, to make their Rabi
frequencies approximately equal. Their emission spectra are
shown in Figs. 2�a� and 2�b�. Both of them consist of one
series of harmonics at integer multiples of the fundamental
frequency ��d�. Around each harmonic, there are also three
pairs of hyper Raman �HR�13,14 peaks which is the typical
property of three-level systems. The plateau of harmonics
extends about to the 29th order, spanning the gigahertz re-
gion and reaching the terahertz region, for example, the 21st
harmonic is about 1 THz. Comparing the intensity of har-
monics in the plateau with that of fundamental frequency
radiation �first order�, the harmonic efficiencies of both struc-
tures are similar.

The most interesting phenomenon is that there are only
odd harmonics in structure 	 but both of odd and even har-
monics with comparable intensities in structure �. In fact,
the further calculation shows that both odd and even harmon-
ics can appear simultaneously in the spectra of structure �
with comparable intensities no matter what polarized direc-
tion e of the driving field, even if it is perpendicular to one of
dipoles. Although one dipole is not driven when e is perpen-
dicular to it, the radiation can be transmitted through it,
which results in even harmonics. Such nonsensibility on the
polarized direction of the driving field suggests that the odd-
even harmonic radiation is an intrinsic property of triple-
coupling three-level systems. We will reveal the dynamic
mechanism of odd-even HHG in the following discussions.
We also inspect the polarization of the radiation, and find
that it depends on the spatial configuration of the TQDS. The
interesting phenomenon is that there are not only linear but
also elliptical polarized harmonics in the spectrum, which is
similar to the recent studies on multilevel molecular
systems.15 The polarization behaviors of HHG in multilevel
TQDS will be investigated in details in another work.

Intuitively, the structure � provides only one more transi-
tion path than structure 	 does in processes of electron-field
interaction. However, it leads to their distinct HHG behav-
iors. To reveal the HHG mechanism of the two structures we
adopt the Floquet theorem to investigate the evolution of
dipole moment ��t�. Based on the Floquet theorem, the

FIG. 2. �Color online� Logarithm of emission spectra as func-
tions of � /�d for structure �a� 	 and �b� �. Insets in �a� and �b�:
part of the emission spectrum enclosed in the dashed box.
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quantum state of a time-periodic Hamiltonian such as Eq. �2�
is written as ��t�=�A�e−i��t/����t�, where Floquet state
���t� is periodic functions of t and �� is the corresponding
quasienergy with �=� ,� ,�. By expanding ���t� further into
Fourier series ���t�=n=−�

� i=0
2 Ci

n����ein�dt�i�, the solution of
i�d /dt���t�=H�t���t� can be converted to an eigenvalue-
eigenvector problem for an infinite dimensional Floquet
Hamiltonian in the basis �i ,n�,16

�HF�ij
nk = Hij

n−k + n��d�ij�kn, �3�

where Hij
n−k are Fourier components of H�t� of Eq. �2�, i �j� is

the index of electron level and n �k� is the index of Fourier
basis. By diagonalizing HF, one can obtain the eigenvectors
��

m�t� and the corresponding eigenvalues ��,m=��+m��d

with �� denoting the three smallest absolute values of ��,m,
i.e., the three quasienergies. For structure ��	�, ��

=−0.358�−0.299� ,−0.163�−0.044� ,−0.008�0.296���d. In
fact, the space spanned by �i ,n� is the direct product space of
electronic levels and harmonic oscillation modes. Then �Ci

n�2
is just the probability of electronic occupation on level i with
mode n�d. For a direction e�, the evolution of dipole mo-
ment ��t� can be analyzed by using the following formula:

��t� = ���t��e� · r���t��
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The intensity of possible radiation frequency mode �k= �n
−n���d− ���−���� /� is determined by the coefficient Ck
which is written as

Ck = 
�,n

��C0
n�
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n�
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n��������02
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The high-order harmonics and HR radiation, respectively,
correspond to the cases when �=�� and ����.

The Fourier components of field-electron interaction
terms of H�t� in Eq. �2� provide the off-diagonal elements
�coupling terms� of HF. For structure 	, the basis vectors
�0,n� and �1,n�� are not coupled due to G01=0. Then by
rearranging the sequence of the bases, the matrix HF of struc-
ture 	 can be reduced to a form of a direct sum of two
matrices,

HF = HF1 � HF2 =�
] ] ] ] ]

¯ E0 + �n − 1���d 0 �G02/2 0 0

¯ 0 E1 + �n − 1���d �G12/2 0 0 ¯

¯ �G02/2 �G12/2 E2 + n��d �G02/2 �G12/2 ¯

¯ 0 0 �G02/2 E0 + �n + 1���d 0 ¯

¯ 0 0 �G12/2 0 E1 + �n + 1���d ¯

] ] ] ] ]

�
� �

] ] ] ] ]

¯ E0 + n��d 0 �G02/2 0 0 ¯

¯ 0 E1 + n��d �G12/2 0 0 ¯

¯ �G02/2 �G12/2 E2 + �n + 1���d �G02/2 �G12/2 ¯

¯ 0 0 �G02/2 E0 + �n + 2���d 0 ¯

¯ 0 0 �G12/2 0 E1 + �n + 2���d ¯

] ] ] ] ]

� , �6�

where HF1 and HF2 are in the subspaces with basis
�¯�2,n� , �0,n+1� , �1,n+1� , �2,n+2�¯� and �¯�2,n
−1� , �0,n� , �1,n� , �2,n+1�¯�, respectively. In this direct sum
space, the eigenvectors of HF can be written as ��i

1� � ��2�
and ��1� � ��i

2�, where ��i
1�2�� are eigenvectors of HF1�2�, and

��1�2�� are zero vectors of the subspaces. For structure �,
however, the vectors �i ,n� and �j ,n�� �i� j and n−n�= �1�

are directly coupled so that HF cannot be reduced to a form
of a direct sum of two matrices as in the case of structure 	.
This can leads to their distinct dynamical behaviors.

In Fig. 3, we present the expansion coefficients Ci
n of

Floquet state ���t� for structures 	 and �. The nonzero Ci
n

localize in the range of n=−23–20 for structure 	 and n
=−32–26 for � as shown in Figs. 3�a� and 3�c�. The range of

MODEL OF GENERATING EITHER ODD OR EVEN… PHYSICAL REVIEW B 82, 125301 �2010�

125301-3



the localization corresponds to the range of the emission
spectrum and is determined by the Rabi frequencies. From
Figs. 3�b� and 3�d�, it can be seen that the Ci

n distributions of
structures 	 and � are very different. For structure 	, C2

n is
nonzero only for even n while C0

n and C1
n are nonzero only

for odd n. This is in agreement with the fact that HF of
structure 	 can be reduced to the direct sum of HF1 and HF2.
According to Eq. �5�, such distribution of Ci

n leads to the fact
that Ck=0 for n−n�=even, thus the even harmonics are for-
bidden. In fact, the Ci

n distribution of structure 	 means that
the three electronic levels can be divided into two groups
which are ��0� , �1�� and ��2��, respectively: one with oscilla-
tion modes of odd multiple �d and the other with even mul-
tiple �d. Since p01=0, only radiations between levels of dif-
ferent groups are allowed which lead to only odd HHG. For
structure �, all three Ci

n �i=0,1 ,2� are possible nonzero for a
certain n because the HF cannot reduce to block-diagonalized
form, and then the above classification of levels is impos-
sible. This makes Ck nonzero for both odd and even n−n�,
i.e., both odd and even HHG are possible. It should be
pointed out that the levels of structure � can be also classi-
fied as that of structure 	 if the polarization of the driving
field is perpendicular to one of the dipoles, however the ra-
diations within same group are allowed since p01�0 which
makes even harmonics possible.

By now we have discussed HHG of two typical three-
level systems and can proceed to a general discussion of
HHG in multilevel systems. Our three-level TQDS is a sys-
tem without inversion symmetry, however there can be two
different coupling structures leading to distinct HHG. It sug-
gests that the broken symmetry cannot ensure the generation
of even harmonics. From the discussion of Floquet theory,
we see that the HHG of a specific coupling structure can be
deduced from the distribution of vibration modes on each
level. In fact, the analysis of HHG from Floquet theory can
become clearer in a fully quantized description of the field
interaction with multilevel systems.

From the viewpoint of full quantization, the whole pro-
cess of a typical HHG is that the system absorbs n photons
with energy ��d and then radiates a photon with energy
n��d which conserves the energy. In an intermediate step,
the electron absorbs or emits a photon and transit to a virtual

state which can be not energy conservation. In Figs. 4�a� and
4�b�, we present the diagram of some possible absorption
processes of two three-level structures discussed above. �i ,N�
is a virtual state representing electron absorbing N photons
and occupying state �i�. For structure 	, from the initial state
�0�, the electron can only occupy the level �2� with odd pho-
ton absorptions and occupy �0� or �1� with even photon ab-
sorptions. Since the radiation of even harmonics from �1� to
�0� is forbidden, there will be only odd harmonics. However
for structure �, the electron can reach any level with both
odd and even photon absorptions, then both odd and even
harmonic generations become possible. This result can be
extended to any coupling structures. Taking four-level struc-
tures in Figs. 4�c� and 4�d� as examples, the levels are di-
vided into two groups ��0� , �2�� and ��1� , �3�� in loop-coupling
case �Fig. 4�c�� and the radiative transitions within same
group are forbidden, then there will be only odd harmonics.
On the contrary, there will be both odd and even harmonics
in the case of Fig. 4�d� which is also confirmed by our cal-
culation.

In fact, such intuitive description is consistent with Flo-
quet theory. As discussed in Ref. 16, the fully quantized basis
�i ,N+n� �N is the photon number� is approximately isomor-
phic to the basis �i ,n� of HF when N is very large. Then the
classification of electronic levels according to the absorbed
photon numbers is consistent with that according to the os-
cillation modes.

In conclusion, we have realized a control of HHG in
TQDS which can be used as a possible design of terahertz
source. By adjusting coupling structures of the multilevel
systems, the HHG can be tuned from only odd order harmon-
ics to both odd and even orders. By Fourier expanding the
Floquet states, we found that there is only odd HHG if the
electronic levels can be divided into two groups by the parity

FIG. 3. �Color online� Fourier expansion coefficients and its
zoomed in parts of Floquet state ���t� of structure ��a� and �b�� 	
and ��c� and �d�� �.
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FIG. 4. �Color online� Scheme of the absorption processes for
two typical three-level structures ��a� and �b�� and two four-level
structures ��c� and �d��, respectively. Grey double arrows indicate
the coupling between levels, and arrows with dashed line indicate
possible transitions with absorbing a photon. Here, �i ,N� is a virtual
state representing electron absorbing N photons and occupying state
�i�.
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of oscillation modes and the radiative transitions within same
group are forbidden. Otherwise both odd and even HHG are
possible. In a full-quantum viewpoint, the parity of the os-
cillation modes coincides with the parity of absorbed photon
numbers, which leads to a straightforward judgement of the
odd-even HHG in noninversion-symmetric multilevel sys-
tems. Our studies are important for understanding the dy-

namic behaviors of HHG in multilevel systems and helpful
for the design controllable terahertz sources in nanostruc-
tures.
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